
Analysis of an epidemiological model structured by time-since-
last-infection

Jorge A. Alfaro-Murilloa, Zhilan Fengb,*, John W. Glasserc

aCenter for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, 
CT, USA

bDepartment of Mathematics, Purdue University, West Lafayette, IN, USA

cNational Center for Immunization and Respiratory Diseases, CDC, Atlanta, GA, USA

Abstract

Modeling time-since-last-infection (TSLI) provides a means of formulating epidemiological 

models with fewer state variables (or epidemiological classes) and more flexible descriptions of 

infectivity after infection and susceptibility after recovery than usual. The model considered here 

has two time variables: chronological time (t) and the TSLI (τ), and it has only two classes: never 

infected (N) and infected at least once (i). Unlike most age-structured epidemiological models, 

in which the i equation is formulated using ∂
∂τ + ∂

∂t i(τ, t), ours uses a more general differential 

operator. This allows weaker conditions for the infectivity and susceptibility functions, and thus, 

is more generally applicable. We reformulate the model as an age dependent population problem 

for analysis, so that published results for these types of problems can be applied, including the 

existence and regularity of model solutions. We also show how other coupled models having two 

types of time variables can be stated as age dependent population problems.
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1. Introduction

In many diseases with temporary immunity to reinfection, the infectivity of infected 

individuals and the susceptibility of recovered ones depends on their times since last 

infection. Ordinary differential equation systems can model such diseases by adding 

multiple state variables. Models structured by time-since-last-infection, considered in [1,2], 

can instead reduce the number of variables (or compartments) by using a single time 

variable for everyone who has been infected at least once. This approach differs from 

models structured by age or age-of-infection (see, e.g., [3–14]. See also the review in [2]).
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The TSLI model considered by Alfaro-Murillo, et al. [2] is a two-dimensional system 

including only two variables: N(t) for the number of never infected people at time t, and i(τ, 

t) for the density of those who have been infected at least once, with τ representing their 

times since last infection. Let D denote the differentiation operator defined as:

D ℓ (τ, t) = lim
ℎ 0+

ℓ (τ + ℎ, t + ℎ) − ℓ (τ, t)
ℎ , (1)

for any function ℓ that is defined on a subset of ℝ+ × ℝ+ (where ℝ+ is the set of non-negative 

real numbers) and has its range defined in a Banach space. We show in Section 2.1 how 

the operator Dℓ(τ, t) is a generalization of the partial derivatives ∂
∂τ + ∂

∂t l(τ, t). The model 

reads:

d
dtN(t) = − ∫

0

∞

T(v) i(v, t)
P(t) dv N(t) − μN(t) + μP(t),

Di(τ, t) = − ∫
0

∞

T(v) i(v, t)
P(t) dv k(τ)i(τ, t) − μi(τ, t),

i(0, t) = ∫
0

∞

T(v) i(v, t)
P(t) dv N(t) + ∫

0

∞

k(τ)i(τ, t)dτ ,

N(0) = N0, i(τ, 0) = i0(τ), P(t) = N(t) + ∫
0

∞

i(τ, t)dτ .

(2)

There are two time variables in System (2). The first is t, representing chronological time (or 

simply time), whereas the second is τ, representing the amount of time that has elapsed since 

a person’s most recent infection, referred to as time since last infection (TSLI). N(t) denotes 

the total number of individuals in the never-infected class at time t and i(τ, t) denotes the 

density of individuals who have been infected at least once and have TSLI τ at time t. 

Thus, the quantity ∫u1
u2i(τ, t)dτ is the number of individuals at time t whose last infection was 

between u1 and u2 units of time ago, and P(t) denotes the total population at time t. The only 

parameters considered in the model are the per capita natural death rate (μ) and those for 

the transmission rate (T(τ)) and infectivity (k(τ)) functions, the latter of which represents a 

factor of reduction in the probability of being infected as a function of TSLI.

A solution: of System (2) is a pair of function, (N, i) with N:ℝ+ ℝ+ being differentiable 

and i:ℝ+ L+
1 (ℝ) being continuous (where L+

1  is the space of non-negative Lebesgue 

integrable functions, see Definition 3), that solve the equations in System (2) for all t ≥ 0 and 

almost everywhere (a.e.) for τ ∈ (0, ∞).

The analysis presented in [2] is for the case when the parameter functions T(τ) and k(τ) 

satisfy stronger conditions than here so that i(τ, t) has continuous partial derivatives and 
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satisfies a partial differential equation. Specifically, the following system is considered in 

[2]:

d
dtN(t) = − ∫

0

∞

T(u) i(u, t)
P du N(t) − μN(t) + μP,

∂
∂τ + ∂

∂t i(τ, t) = − ∫
0

∞

T(u) i(u, t)
P du k(τ)i(τ, t) − μi(τ, t),

(3a)

with conditions:

i(0, t) = ∫
0

∞

T(u) i(u, t)
P du N(t) + ∫

0

∞

k(τ)i(τ, t)dτ ,

N(0) = N0, i(τ, 0) = i0(τ), where P = N(t) + ∫
0

∞

i(τ, t)dτ .

(3b)

In this paper, we present an analysis of the general model (System (2)) with weaker 

conditions on T and k, under which the solution i(τ, t) may not be have continuous partial 

derivatives (see Theorem 4). This may allow the model to have broader applications. The 

approach used to study the general model is to formulate the system as an age dependent 

population (ADP) problem. We use the term “ADP problem” to refer to a particular model 

formulation for age-dependent populations (specified in Section 2), for which theoretical 

results are available, including the existence, uniqueness, positivity, and regularity of 

solutions. We first introduce another formulation of general model, termed a coupled model, 
or a model with two time variables (see Section 2.2). We illustrate how coupled models can 

be stated as ADP problems in general, so that all theory developed for ADP problems can be 

applied to coupled models.

The paper is organized as follows. In Section 2, we demonstrate the link between ADP 

problems and models with two time variables (or coupled models). Properties of solutions 

to the generic ADP problem are also discussed in this section, and the results are applied to 

the reformulation of the general model as a coupled model. Example reformulations of other 

models as coupled models, as well as the relation between Dℓ(τ, t) and ∂
∂τ + ∂

∂t ℓ (τ, t), 

are also presented. Application of results in Section 2 to the general model is presented in 

Section 3, including the existence and regularity of model solutions. Section 4 includes a 

discussion of the results.

2. Links between ADP problems and coupled models

In this section, we present solutions to a generic ADP problem and formulate a coupled 

model as an ADP problem. Then solution properties of the coupled model are discussed 

by applying results for ADP problems. Example reformulations of other models as coupled 

models are also presented.
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2.1. The operator D and its relation to a transport equation

Many age-structured epidemic models are stated in terms of a transport partial differential 

equation of the form

∂
∂τ + ∂

∂t ℓ (τ, t) = f( ℓ ), (4)

where f is a given function. The i equation in System (3) is also in this form. Next we 

explain why we state the coupled problem in Section 2.3 with the operator D instead.

Classical solutions of a partial differential equation such as Equation (4) are C1 functions 

(i.e., have continuous partial derivatives). If ℓ ∈ C1, we can show that Dℓ(τ, t) exists and 

satisfies

D ℓ (τ, t) = ∂
∂τ + ∂

∂t ℓ (τ, t) .

Indeed, suppose that ℓ :ℝ+ × [0, t ) ℝ2 is a C1 function in a neighborhood of (τ, t). Let ϵ > 

0. There exists δ > 0 such that if 0 < h < δ then

∂
∂τ ℓ (τ, t + ℎ) − ∂

∂τ ℓ (τ, t) < ϵ
5 ,

ℓ (τ, t + ℎ) − ℓ (τ, t)
ℎ − ∂

∂t ℓ (τ, t) < ϵ
5 ,

and ∂
∂τ ℓ (τ, t + ℎ) exists. Given any such h > 0, there exists h′ > 0 such that

ℓ (τ + ℎ, t + ℎ)
ℎ − ℓ τ + ℎ′, t + ℎ

ℎ′ < ϵ
5,

ℓ τ + ℎ′, t + ℎ − ℓ (τ, t + ℎ)
ℎ′ − ∂

∂τ ℓ (τ, t + ℎ) < ϵ
5,

ℓ (τ, t + ℎ)
ℎ′ − ℓ (τ, t + ℎ)

ℎ < ϵ
5 .

Therefore,
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ℓ (τ + ℎ, t + ℎ) − ℓ (τ, t)
ℎ − ∂

∂τ ℓ (τ, t) + ∂
∂t ℓ (τ, t)

≤ ℓ (τ + ℎ, t + ℎ)
ℎ − ℓ τ + ℎ′, t + ℎ

ℎ′ + ℓ (τ, t + ℎ) − ℓ (τ, t)
ℎ − ∂

∂t ℓ (τ, t)

+ ℓ τ + ℎ′, t + ℎ − ℓ (τ, t + ℎ)
ℎ′ − ∂

∂τ ℓ (τ, t + ℎ) + ℓ (τ, t + ℎ)
ℎ′ − ℓ (τ, t + ℎ)

ℎ
+ ∂

∂τ ℓ (τ, t + ℎ) − ∂
∂τ ℓ (τ, t)

< ϵ,

for any 0 < h < δ. It follows that Dℓ(τ, t) exists and is equal to ∂
∂τ + ∂

∂t ℓ (τ, t). Therefore, 

any solution to a transport equation such as Equation (4) will also be a solution to the same 

equation with the operator D.

The solution function i(τ, t) can be C1 if adequate conditions are imposed on T and k (see 

Theorem 4). However under weaker conditions on T and k we can obtain solutions for i 
that are not C1 and still get information about the number of infected individuals with TSLI 

between u1 and u2 as ∫u1
u2i(τ, t)dτ does not change if the i function has different values on a 

set with measure zero in τ. As we do not want to impose extra conditions for T and k to 

leave the application of the general model as broad as possible, we will consider the general 

operator D and solution functions i to be a continuous L1-valued function with domain in [0, 

∞), that is, for each non-negative t the function i(·, t) defined as τ ↦ i(τ, t) is L1.

2.2. The generic ADP problem

We define an ADP problem as described in [15, Chapter 1]. An ADP problem is described 

by the following three equations:

D ℓ (τ, t) = G( ℓ ( ⋅ , t))(τ), (5a)

ℓ (0, t) = F( ℓ ( ⋅ , t)), (5b)

ℓ (τ, 0) = ϕ(τ), (5c)

with G : L1 → L1, F :L1 ℝn, and ϕ ∈ L1. In ADP problems Equations (5a), (5b) and (5c) 

are termed the Balance Law, the Birth Law, and the initial condition, respectively.

For ease of presentation, we introduce the following definition:

Definition 1. For t > 0, let Lt = C [0, t]; L1  be the Banach space of continuous L1-valued 

functions on [0, t] with the norm:

∥ ℓ ∥Lt = sup
0 ≤ t ≤ t

∥ ℓ (t) ∥ ,

where ℓ ∈ Lt .
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In a natural way, an element of Lt  can be identified with an element of L1 (0, ∞) × (0, t ); ℝn

[15, Lemma 2.1], which allows us to use the same symbol for both; i.e.,

ℓ (t)(τ) = ℓ ( ⋅ , t)τ = ℓ (τ, t),

where 0 ≤ t ≤ t , and a.e. τ > 0.

Definition 2. Let t > 0. Let F :L1 ℝn, G : L1 → L1, and ϕ ∈ L1. We say that a function 

ℓ ∈ Lt  is a solution of the ADP problem for the initial distribution ϕ on [0, t] provided that ℓ 
satisfies the equations in System (5) for all t ∈ [0, t ] and a.e. for τ ∈ (0, ∞).

If we assume that ℓ is a solution of the ADP problem on [0, t] and c ∈ ℝ, then we can define 

a “cohort function”:

wc(t) = ℓ (t + c, t)

for every tc ≤ t ≤ t , where tc = max{−c, 0}. Using Equation (5a), we can show that the right 

derivative of this function exists and satisfies

wc′(t + ) = lim
ℎ 0+

wc(t + ℎ) − wc(t)
ℎ = G( ℓ ( ⋅ , t))(t + c) (6)

a.e. for t ∈ tc, t . If G is Lipschitz on norm-balls of L1, the function G(ℓ(·, t))(τ) is integrable 

as a function from (0, ∞) × (0, t ) to ℝn [15, Lemma 2.2], and so wc′(t + ) is also integrable in 

[0, t]. Therefore, we have that any function of the form,

t C + ∫
tc

t
wc′(s + )ds,

has a derivative equal to wc′(t + ) a.e. t ∈ tc, t  [16, Chapter 5, Theorem 10]. So, we can 

integrate Equation (6) and obtain

wc(t) =
wc(t − τ) + ∫t − τ

t
G( ℓ ( ⋅ , s))(s + c)ds a . e . τ ∈ (0, t),

wc(0) + ∫0
t
G( ℓ ( ⋅ , s))(s + c)ds a . e . τ ∈ (t, ∞) .

Substituting c = τ − t, and using Equation (5b), we obtain the integral equation:
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ℓ (τ, t) =
F( ℓ ( ⋅ , t − τ)) + ∫

t − τ

t
G( ℓ ( ⋅ , s))(s + τ − t)ds a . e . τ ∈ (0, t),

ϕ(τ − t) + ∫
0

t
G( ℓ ( ⋅ , s))(s + τ − t)ds a . e . τ ∈ (t, ∞) .

(7)

In conclusion, if G is Lipschitz on norm-balls of L1, every solution of the ADP problem 

satisfies Equation (7). Clearly, not every solution of Equation (7) is a solution of the ADP 

problem, because the function ℓ in Equation (7) need not be differentiable in the sense of 

the operator D. The converse is true under certain conditions (see Theorem 2.9 in [15] and 

Theorem 2.3 in [17]), a fact that we will use later.

If both functions F and G are Lipschitz on norm-balls of L1, then a function ℓ satisfies 

Equation (7), for t ∈ 0, t , if and only if ℓ is a mild solution of the ADP problem (See 

Theorem 2.2 in [15]) according to Definitions 4–6 in the Appendix.

We define an equilibrium solution for the ADP problem in Definition 7 of the Appendix. A 

very important result in the theory of ADP problems is that, if F :L+
1 ℝ+

n  and G:L+
1 L1

are Lipschitz on norm-balls of L1 and there exists a function c3 that satisfies (ii) in the proof 

of part (c) for Proposition 2, then ϕ is an equilibrium solution of the ADP problem if and 

only if ϕ is absolutely continuous with the properties that ϕ′ ∈ L1, ϕ′ = G(ϕ), and ϕ(0) = 

F(ϕ) [15, Proposition 4.1]. We will make use of this result later.

2.3. General formulation of coupled models

In this section, we focus on models consisting of both equations that depend only on time 

t and variables that depend on both time t and τ (System (2) is an example). For ease of 

reference, we refer to this type of model as a coupled model. Several other examples are 

provided in Section 2.6. A general formulation for such a system is given below.

Let X(t) denote the vector of functions that depend only on t, and let y(τ, t) denote the vector 

of functions that depend on both t and τ. The general coupled model has the following form:

dX(t)
dt = Fx(X(t), y( ⋅ , t)) + Mx(X(t), y( ⋅ , t))X(t),

Dy(τ, t) = Gy(X(t), y( ⋅ , t))(τ),
(8a)

with boundary and initial conditions

y(0, t) = Fy(X(t), y( ⋅ , t)), X(0) = X0, y( ⋅ , 0) = ϕy, (8b)

where Fx:ℝm × L1 ℝk ℝm, Mx:ℝm × L1 ℝk B ℝm, ℝm , Gy:ℝm × L1 ℝk L1 ℝk , 

Fy:ℝm × L1 ℝk ℝk, X0 ∈ ℝm and ϕy ∈ L1 ℝk . The operator D is defined in Equation 

(1).
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A solution to System (8) is a set of functions X(t) and y(τ, t) that satisfy the equations for 

time t ∈ 0, t  for some t > 0 and a.e. for τ ∈ (0, ∞). An equilibrium of the system is a 

solution that is constant on time t.

2.4. From coupled models to ADP problems and solution properties

We can reformulate the coupled model (System (8)) as an ADP problem described in System 

(5) by defining the functions F :L1 ℝm + k ℝm + k and G:L1 ℝm + k L1 ℝm + k  as

F
ϕx
ϕy

=
Fx ∫

0

∞
ϕx(τ)dτ, ϕy

Fy ∫
0

∞
ϕx(τ)dτ, ϕy

, (9a)

G
ϕx
ϕy

(τ) =
Mx ∫

0

∞
ϕx(v)dv, ϕy ϕx(τ)

Gy ∫
0

∞
ϕx(v)dv, ϕy (τ)

, (9b)

where ϕ =
ϕx
ϕy

 with ϕx ∈ L1 ℝm  and ∫0
∞ϕx(τ)dτ = X0.

Let π(m) and π(−k) denote the projection functions in Definition 8 of the Appendix. Then the 

following result holds:

Theorem 1. Consider System (8) as an ADP problem (System (5)) with F and G being 
defined as in System (9). Assume that F and G are Lipschitz on norm-balls of L1. If the ADP 
problem has a solution ℓ ∈ Lt  for the functions F and G and the initial condition ϕ, then 

System (8) has a solution X(t), y(τ, t) for t ∈ 0, t  and a.e. for τ ∈ (0, ∞), given by

X(t) = π(m) ∫
0

∞
ℓ (τ, t)dτ and y( ⋅ , t) = π( − k)( ℓ ( ⋅ , t)) .

Proof. Let t > 0 such that ℓ ∈ Lt  is a solution of the ADP problem on [0, t] for the functions 

F, G and the initial condition ϕ. Define

X(t) = π(m) ∫
0

∞
ℓ (τ, t)dτ and y( ⋅ , t) = π( − k)( ℓ ( ⋅ , t)) .

Applying π(m) to Equation (5c), we have

π(m)( ℓ (τ, 0)) = ϕx(τ);
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integrating, we obtain Equation (8b). Applying π(−k) to Equation (5a) and using the 

definition of G in Equation (9b), we obtain the y(τ, t) in Equation (8a). In the same way, 

from Equation (5b) and the definition of F in Equation (9a), we obtain the y(0, t) in Equation 

(8b). Also, applying π(−k) to Equation (5c) yields the y(·, 0) in Equation (8b).

It remains to show that X satisfies Equation (8a). Notice that

π(m) F( ℓ ( ⋅ , t)) + ∫
0

∞
G( ℓ ( ⋅ , t))(τ)dτ = Fx(X(t), y( ⋅ , t)) + Mx(X(t), y( ⋅ , t))X(t) .

Thus, it suffices to show that

d
dtX(t) = π(m) F( ℓ ( ⋅ , t)) + ∫

0

∞
G( ℓ ( ⋅ , t))(τ)dτ .

Recall from Section 2.2 that, if F and G are Lipschitz on norm-balls of L1, a solution of the 

ADP problem is also a mild solution of the ADP problem. Hence, if h > 0, then

ℎ−1[X(t + ℎ) − X(t)] − π(m) F( ℓ ( ⋅ , t)) + ∫
0

∞
G( ℓ ( ⋅ , t))(τ)dτ

= ℎ−1π(m) ∫
0

∞
ℓ (τ, t + ℎ)dτ − ∫

0

∞
ℓ (τ, t)dτ − π(m) F( ℓ ( ⋅ , t)) − ∫

0

∞
G( ℓ ( ⋅ , t))(τ)dτ

≤ ℎ−1π(m) ∫
0

ℎ
ℓ (τ, t + ℎ) − F( ℓ ( ⋅ , t))dτ

+ π(m) ∫
0

∞
ℎ−1[ ℓ (τ + ℎ, t + ℎ) − ℓ (τ, t)] − G( ℓ ( ⋅ , t))(τ)dτ

≤ ℎ−1∫
0

ℎ
ℓ (τ, t + ℎ) − F( ℓ ( ⋅ , t))  dτ + ∫0

∞
ℎ−1[ ℓ (τ + ℎ, t + ℎ) − ℓ (τ, t)] − G( ℓ ( ⋅ , t))(τ) dτ,

which tends to zero as h → 0+ by the limit equations in Definition 4 of the Appendix. This 

shows that the right derivative of X exists and is equal to

π(m) F( ℓ ( ⋅ , t)) + ∫
0

∞
G( ℓ ( ⋅ , t))(τ)dτ for t ∈ [0, t ] .

For the left derivative, let h > 0. Using similar estimates as for the right derivative, we obtain
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ℎ−1[X(t) − X(t − ℎ)] − π(m) F( ℓ ( ⋅ , t)) + ∫
0

∞
G( ℓ ( ⋅ , t))(τ)dτ

≤ ℎ−1∫
0

ℎ
ℓ (τ, t)dτ − F( ℓ ( ⋅ , t))

+ ℎ−1 ∫
ℎ

∞
ℓ (τ, t)dτ − ∫

0

∞
ℓ (τ, t − ℎ)dτ − ∫

0

∞
G( ℓ ( ⋅ , t))(τ)dτ .

The first factor in the last sum goes to zero as h → 0+ by the Fundamental Theorem of 

Calculus and the fact that ℓ is a solution of the ADP problem (in particular Equation (5b)):

lim
ℎ 0+

ℎ−1∫
0

ℎ
ℓ (τ, t)dτ = ℓ (0, t) = F( ℓ ( ⋅ , t)) .

For the second factor, recall that, if F and G are Lipschitz on norm-balls of L1, then ℓ is 

a mild solution of the ADP problem if and only if it satisfies the integral equation of the 

problem, Equation (7) [15, Theorem 2.2]. Using Equation (7), for any 0 < h < min {τ, t}, we 

have

ℓ (τ, t) − ℓ (τ − ℎ, t − ℎ) = ∫
t − ℎ

t
G( ℓ ( ⋅ , s))(s + τ − t)ds,

and for h < t,
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ℎ−1 ∫
ℎ

∞
ℓ (τ, t)dτ − ∫

0

∞
ℓ (τ, t − ℎ)dτ − ∫

0

∞
G( ℓ ( ⋅ , t))(τ)dτ

= ℎ−1 ∫
ℎ

∞
ℓ (τ, t) − ℓ (τ − ℎ, t − ℎ)dτ − ∫

0

∞
G( ℓ ( ⋅ , t))(τ)dτ

= ℎ−1 ∫
ℎ

∞

∫
t − ℎ

t
G( ℓ ( ⋅ , s))(s + τ − t)dsdτ − ∫

0

∞
G( ℓ ( ⋅ , t))(τ)dτ

= ∫
0

∞
ℎ−1 ∫

t − ℎ

t
G( ℓ ( ⋅ , s))(s + τ + ℎ − t) − G( ℓ ( ⋅ , t))(τ)ds dτ

≤ ∫
0

∞
ℎ−1 ∫

t − ℎ

t
(G( ℓ ( ⋅ , s))(s + τ + ℎ − t) − G( ℓ ( ⋅ , t))(τ))ds dτ

≤ ℎ−1 ∫
t − ℎ

t

∫
0

∞
G( ℓ ( ⋅ , s))(s + τ + ℎ − t) − G( ℓ ( ⋅ , t))(s + τ + ℎ − t) dτ ds

+ ℎ−1 ∫
t − ℎ

t

∫
0

∞
G( ℓ ( ⋅ , t))(s + τ + ℎ − t) − G( ℓ ( ⋅ , t))(τ) dτ ds

≤ sup
t − ℎ ≤ s ≤ t

∥ G( ℓ ( ⋅ , s)) − G( ℓ ( ⋅ , t)) ∥ + sup
t − ℎ ≤ s ≤ t∫0

∞
G( ℓ ( ⋅ , t))(s + τ + ℎ − t) − G( ℓ ( ⋅ , t))(τ) dτ

.

In the last inequality, the first factor in the sum tends to zero as h → 0+ because the 

function t ↦ G(ℓ(·, t)) is continuous [15, Lemma 2.2]. The second factor tends to zero by the 

continuity of the translation in L1. □

2.5. Equilibrium solutions of the coupled model and ADP problem

For any coupled model where Theorem 1 can be applied, an equilibrium solution of the 

respective ADP problem translates into an equilibrium solution of the coupled model by 

applying the projection π(m) and integrating to obtain the equilibrium for X or applying 

the projection π(−k) to obtain the equilibrium for y. In some cases, those are the only 

equilibrium solutions of the coupled model, as stated in the following theorem.

Theorem 2. Consider System (8) as an ADP problem (System (5)) by letting F and G be as 
defined in System (9). Assume that F and G are Lipschitz on norm-balls of L1. If the ADP 
problem has an equilibrium solution ϕ, then

X0 = π(m) ∫
0

∞
ϕ(τ)dτ , ϕy(τ) = π( − k)(ϕ(τ))

is an equilibrium solution of the System (8).

Conversely, suppose that X0, ϕy is an equilibrium solution of System (8) such that
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i. ϕy is absolutely continuous,

ii. ϕy′ ∈ L1, and

iii. all eigenvalues of Mx(X0, ϕy) have negative real parts.

Then,

ϕ(τ) = eMx X0, ϕy τFx X0, ϕy
ϕy(t)

is an equilibrium solution of the ADP problem.

Proof. Under the assumptions of the theorem, if the ADP problem has an equilibrium 

solution ϕ, then we can apply Theorem 1 to obtain a solution of the coupled model (System 

(8)). Because the equilibrium solution of the ADP problem does not depend on t, neither will 

the solution of the coupled model.

On the other hand, let (X0, ϕy) be an equilibrium solution of the coupled model (System (8)) 

that satisfies (i), (ii) and (iii). Define

ϕ(τ) =
ϕx(τ)
ϕy(τ) = eMx X0, ϕy τFx X0, ϕy

ϕy(τ)
.

Then

∫
0

τ
ϕx(τ)dτ = Mx X0, ϕy

−1eMx X0, ϕy τFx X0, ϕy − Mx X0, ϕy
−1Fx X0, ϕy .

The inverse (Mx(X0, ϕy))−1 exists because we are assuming that all eigenvalues of the matrix 

Mx(X0, ϕy) have negative real parts. Moreover, if all eigenvalues of a square matrix A have 

negative real parts, then limτ ∞eAτx0 = 0 for any vector x0 of the same dimension as A [18, 

Chapter 1, Theorem 2]. Thus,

∫
0

∞
ϕx(τ)dτ = − Mx X0, ϕy

−1Fx X0, ϕy .

By Equation (8a) and the fact that, if (X0, ϕy) is an equilibrium solution of the coupled 

model, then it satisfies X′(t) = 0, we have

− Mx X0, ϕy
−1Fx X0, ϕy = X0 .

Hence, ∫0
∞ϕx(τ)dτ = X0.
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From the definition of ϕx and the fact that ϕy is absolutely continuous, ϕ is absolutely 

continuous. Moreover,

ϕx′ (x) = Mx X0, ϕy ϕx(τ),

so ϕx′ ∈ L1. Also, from the assumption that ϕy ∈ L1, we have that ϕ′ ∈ L1.

Now we can show that ϕ is indeed a solution of the ADP problem:

ϕ(0) =
Fx X0, ϕy

ϕy(0)
=

Fx X0, ϕy
Fy X0, ϕy

= F(ϕ)

and

Dϕ(τ) = ϕ′(τ) =
Mx X0, ϕy ϕx(τ)

ϕy′ (τ)
= G(ϕ)(τ),

where F and G are as in System (9). □

2.6. Other examples of coupled models

Example 1. Brauer, et al. [4] studied a model of cholera that has three epidemiological 

classes: susceptible individuals (S(t), only dependent on time), infected individuals (i(t, ·), 
structured by time since infection), and contaminated water (p(t, ·), structured by the time 

that the pathogen has been in the water). Let

X(t) = S(t), y( ⋅ , t) = i( ⋅ , t)
p( ⋅ , t) .

Then the functions corresponding to those in System (8) are:

Fx(X(t), y( ⋅ , t)) = A,

Mx(X(t), y( ⋅ , t)) = − μ − ∫
0

∞
βdk(τ) βiq(τ) y( ⋅ , t)dτ,

Gy(X(t), y( ⋅ , t))(τ) = − θ(τ) 0
0 δ(τ) y( ⋅ , t),
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Fy(X(t), y( ⋅ , t)) = X(t)∫
0

∞
βdk(τ) βiq(τ)

ξ(τ) 0
y(τ, t)dτ,

with the initial conditions:

X0 = S0, ϕy =
i0
p0

.

Example 2. Bhattacharya and Adler [19] describe an SIRS model in which the susceptible 

S(t) and infected I(t) classes depend only on time, whereas the recovered class R(·, t) is 

structured by time since recovery. Their model can be formulated in the form of System (8). 

Let

X(t) = S(t)
I(t) , y( ⋅ , t) = R( ⋅ , t) .

The corresponding functions are

Fx(X(t), y( ⋅ , t)) = ∫
0

∞
ρ(τ)y(τ, t)dτ

0

,

Mx(X(t), y( ⋅ , t)) =
−βπ2(X(t)) 0
βπ2(X(t)) −γ ,

Gy(X(t), y( ⋅ , t))(τ) = − ρ(τ)y(τ, t),

Fy(X(t), y( ⋅ , t)) = γπ2(X(t)),

where π2 is the projection defined as πi(x1, x2, …, xn) = xi, with the initial conditions

X0 =
S0
I0

, ϕy = 0.

Example 3. Magal and McCluskey [20] describe a two-group SIR model in which there are 

two susceptible classes (S1 and S2) and two recovered classes (R1 and R2) that depend only 

on time, and two infected classes (i1(·, t) and i2(·, t)) that are structured by the time since 

infection. Their model can be formulated in the form of System (8) by letting
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X(t) =

S1(t)
S2(t)
R1(t)
R2(t)

, y( ⋅ , t) =
i1( ⋅ , t)
i2( ⋅ , t) .

The corresponding functions are

Fx(X(t), y( ⋅ , t)) =

Λ − π(2)(X(t)) • ∫
0

∞
B(τ)y(τ, t)dτ

∫
0

∞
M(τ)y(τ, t)dτ

,

Mx(X(t), y( ⋅ , t)) = − D 0
0 D ,

Gy(X(t), y( ⋅ , t))(τ) = − (M(τ) + D)y(τ, t),

Fy(X(t), y( ⋅ , t)) = π(2)(X(t)) • ∫
0

∞
B(τ)y(τ, t)dτ∫

0

∞
M(τ)y(τ, t)dτ,

where • represents the dot product of vectors, π(2) is the projection defined as

π(m) x1, x2, ⋯, xn = x1, x2, ⋯, xm ,

with 0 < m < n, and with the notation

Λ =
λ1
λ2

, B(τ) =
0 β2(τ)

β1(τ) 0 ,

M(τ) =
m1(τ) 0

0 m2(τ) , D =
d1 0
0 d2

.

The initial conditions are

X0 =
S0
R0

, ϕy = i0 .
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3. Solution properties of the general model

We first simplify the general model (System (2)) by showing that the total population size 

P(t) remains constant for all t ≥ 0 and then analyze it by reformulating it as a coupled 

model.

3.1. Simplification of the general model

Let N0 ∈ ℝ+ and i0 ∈ L+
1 (ℝ) be such that N0 + ∫0

∞i0(τ)dτ > 0. A solution of the 

general model (System (2)) is a pair of functions, N(t):ℝ+ ℝ+ differentiable and 

i( ⋅ , t):ℝ+ L+
1 (ℝ) continuous, that solve the equations in System (8a) for all t ≥ 0 and 

a.e. for τ ∈ (0, ∞).

Assumption 1. Let T, k:ℝ+ ℝ+ be bounded functions such that ∫
0

∞
T(τ)dτ > 0 and

i ∫
0

∞

T(τ)dτ < ∞ or 

ii k(τ) = 0 a . e for τ > 0 .

(10)

Proposition 1. Let T, k satisfy Assumption 1. For any solution (N(t), i(τ, t)) of System (2), 
the total population remains constant; i.e., P(t) = P , where

P = N0 + ∫
0

∞

i0(τ)dτ . (11)

Proof. Suppose that (N, i) is a solution of System (2). To simplify the notation, define

ℬ(t) = ∫
0

∞
T(v) i(v, t)

P(t) dv

and wc(t) = i(t + c, t) for any c ∈ ℝ and t ≥ tc, where tc = max {−c, 0}. Note that

lim
ℎ 0+

wc(t + ℎ) − wc(t)
ℎ = lim

ℎ 0+
i(t + c + ℎ, t + ℎ) − i(t + c, t)

ℎ
= Di(t + c, t)
= − ℬ(t)k(t + c)wc(t) − μwc(t) .
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Thus, the right derivative of wc′(t + ) exists a.e. From Assumption 1, we know that 

ℬ(t)k(t + c) is either bounded by ∫
0

∞
T(τ)dτ × supτ k(τ)  or is zero a.e. Therefore, wc′(t + ) is 

integrable in [0, t] for any t > 0, whenever wc(t) is integral in [0, t]. Because i:ℝ+ L+
1 (ℝ)

is continuous, this is the case for any t > 0. so, we can integrate wc′(t + ) to obtain that wc 

satisfies a.e. the integral equation:

wc(t) = − ∫
tc

t
ℬ(s)k(s + c)wc(s) + μwc(s) ds + wc tc ;

that is,

wc(t) =

wc(0) − ∫
0

t
ℬ(s)k(s + c)wc(s) + μwc(s) ds if c > 0,

wc( − c) − ∫
0

t
ℬ(s)k(s + c)wc(s) + μwc(s) ds if c < 0.

 
 

Letting τ = t + c and using the i(0, t) and i(τ, 0) equations in System (2), we obtain:

i(τ, t) = i0(τ − t) − ∫
0

t
[ℬ(s)k(τ − t + s)i(τ − t + s, s) + μi(τ − t + s, s)]ds,

a.e. for τ < t, and

i(τ, t) = ℬ(t − τ) N(t − τ) + ∫
0

∞
k(v)i(v, t − τ)dv

− ∫
t − τ

t
[ℬ(s)k(τ − t + s)i(τ − t + s, s) + μi(τ − t + s, s)]ds,

a.e. for τ > t. Integrating, we have
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∫
0

∞

i(τ, t)dτ = ∫
0

t

ℬ(t − τ) N(t − τ) + ∫
0

∞

k(v)i(v, t − τ)dv dτ

− ∫
0

t

∫
t − τ

t

[ℬ(s)k(τ − t + s)i(τ − t + s, s) + μi(τ − t + s, s)]dsdτ

+ ∫
t

∞

i0(τ − t)dτ

− ∫
t

∞

∫
0

t

[ℬ(s)k(τ − t + s)i(τ − t + s, s) + μi(τ − t + s, s)]dsdτ .

(12)

Changing the limits of integration and making the change of variable υ = τ − t + s yields

∫
0

t

∫
t − τ

t
[ℬ(s)k(τ − t + s)i(τ − t + s, s) + μi(τ − t + s, s)]dsdτ

= ∫
0

t

∫
o

s
[ℬ(v)k(v)i(v, s) + μi(v, s)]dv ds,

and

∫
t

∞

∫
0

t
[ℬ(s)k(τ − t + s)i(τ − t + s, s) + μi(τ − t + s, s)]dsdτ

= ∫
0

t

∫
s

∞
[ℬ(v)k(v)i(v, s) + μi(v, s)]dv ds .

Using s = t − τ and υ = τ − t in the other two integrals of Equation (12), we get

∫
0

∞

i(τ, t)dτ = ∫
0

t

ℬ(s)N(s)ds − μ∫
0

t

∥ i( ⋅ , s) ∥ ds + ∫
0

∞

i0(v)dv . (13)

Integrating the N equation in System (2), we obtain

N(t) = − ∫
0

t

ℬ(s)N(s)ds + μ∫
0

t

∥ i( ⋅ , s) ∥ ds + N0 . (14)

Finally, adding Equation (13) and Equation (14), we complete the proof. □
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3.2. The general model as an ADP problem

Proposition 1 allows us to reduce System (2) to the following simpler system (i.e., replacing 

the function P(t) by the constant P):

d
dtN(t) = − ∫

0

∞

T(v) i(v, t)
P dv N(t) − μN(t) + μP,

Di(τ, t) = − ∫
0

∞

T(v) i(v, t)
P dv k(τ)i(τ, t) − μi(τ, t),

i(0, t) = ∫
0

∞

T(v) i(v, t)
P dv N(t) + ∫

0

∞

k(τ)i(τ, t)dτ ,

N(0) = N0, i(τ, 0) = i0(τ),

P = N0 + ∫
0

∞

i0(τ)dτ .

(15)

We can then rewrite System (15) as a coupled model as in System (8), which can be studied 

as an ADP problem. Let

Fx X, ϕy = μX + μ∫
0

∞

ϕy(τ)dτ,

Mx X, ϕy = − ∫
0

∞

T(τ)ϕy(τ)
P dτ − μ,

Gy X, ϕy = − ∫
0

∞

T(τ)ϕy(τ, t)
P dτ k(τ)ϕy(τ, t) − μϕy(τ),

Fy X, ϕy = ∫
0

∞

T(τ)ϕy(τ)
P dτ X + ∫

0

∞

k(τ)ϕy(τ)dτ ,

(16)

with X0 = N0, ϕy = i0.

For ease of presentation, we introduce the following notation and functions:

i. For 0 < t ≤ ∞ and ϕ ∈ L1 (0, t ), ℝ2 , let

ϕn = π1 ∘ ϕ, ϕi = π2 ∘ ϕ,

where π1, π2 are the projections to the first and second entries as in Definition 8. 

Thus, ϕn and ϕi are the never-infected part of ϕ and the infected-at-least-once part 

of ϕ, respectively.

ii. Let ℱ:L1 ℝ denote the function
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ℱ(ϕ) = ∫
0

∞

T(τ)ϕi(τ)
P dτ . (17)

iii. Let W:L1 ℝ denote the weighted function

W(ϕ) = ∫
0

∞

ϕn(τ) + k(τ)ϕi(τ) dτ . (18)

iv. Let W:L1 ℝ denote the non-weighted function

W(ϕ) = ∫
0

∞

ϕn(τ) + ϕi(τ) dτ . (19)

Notice that W(ϕ) = ∥ ϕ ∥ if ϕ ∈ L+
1 .

Let

F ϕn

ϕi =

μ∫
0

∞

ϕn(τ) + ϕi(τ) dτ

∫
0

∞

T(v)ϕi(v)
P dv ∫

0

∞

ϕn(τ) + k(τ)ϕi(τ) dτ

= μW(ϕ)
ℱ(ϕ)W(ϕ) ,

(20a)

G ϕn

ϕi (τ) =

− ∫
0

∞

T(v)ϕi(v)
P dv ϕn(τ) − μϕn(τ)

− ∫
0

∞

T(v)ϕi(v)
P dv k(τ)ϕi(τ) − μϕi(τ)

= −ℱ(ϕ)ϕn(τ) − μϕn(τ)
−ℱ(ϕ)S(τ)ϕi(τ) − μϕi(τ)

.

(20b)

Using the F and G functions defined in System (20), we can translate System (15) into 

an ADP problem (see System (5) and System (9)). Thus, to apply the results in Section 

2 to describe solution properties of System (15), we focus in the following section on the 

properties of the functions F and G given in System (20).
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3.3. Basic results for the ADP version of the general model

For ease of presentation, we state in this section some preliminary results that we will use in 

the next section to obtain our main results.

Proposition 2. Let P > 0, μ ≥ 0, and T, k:ℝ+ ℝ+ be bounded. The following results hold:

a. The functions ℱ, W and W defined in Equations (17)–(19) are bounded linear 
operators. Moreover,

∥ ℱ ∥op ≤
supτT(τ)

P , ∥ W ∥op ≤ sup
τ

k(τ) , ∥ W ∥op = 1.

b. If ϕ ∈ L1, then there exists 0 < t ≤ ∞ and ℓ ∈ Lt  such that ℓ is the unique mild 

solution of the ADP problem on [0, t] for the functions F, G given in System 
(20) and the initial distribution ϕ.

c. If ϕ ∈ L+
1  then the mild solution ℓ of the ADP problem on [0, tϕ] for the function 

F, G given in System(20), the initial distribution ϕ and tϕ is as in Definition 5, 

has the property that ℓ ( ⋅ , t) ∈ L+
1  for 0 ≤ t < tϕ.

The proof can be found in Appendix B.1.

Proposition 3. Let P > 0, μ ≥ 0, and let T, k:ℝ+ ℝ+ be bounded, and ϕ ∈ L1. Let ℓ be 

the mild solution of the ADP problem on [0, tϕ) for the functions F, G given in System (20) 

and the initial condition ϕ, where tϕ is as in Definition 5. Then W( ℓ ( ⋅ , t)) is constant for all 

0 ≤ t < tϕ. Additionally, if ϕ ∈ L+
1 , then.∥ℓ(·, t) ∥ = ∥ϕ∥ for all 0 ≤ t < tϕ.

The proof can be found in Appendix B.2.

Proposition 4. Let P > 0, μ ≥ 0, T, k:ℝ+ ℝ+ be bounded, and ϕ ∈ L+
1  Let ℓ be the mild 

solution of the ADP problem on [0, tϕ) for the functions F, G given in System (20) and the 

initial condition ϕ, where tϕ is as in Definition 5. Then tϕ = ∞.

The proof can be found in Appendix B.3.

3.4. Existence and regularity of the model solution

Based on the results stated in the previous section, we describe the properties of the 

solutions to the general model (System (15)). Definitions for some of the terms can be 

found in Appendix A. For example, a function being globally Lipschitz (Definition 9) and 

F-differentiable (Definition 10).

Proposition 5. Let P > 0, μ ≥ 0. Let T :ℝ+ ℝ+ be a bounded function, and let k:ℝ+ ℝ+

be a bounded globally Lipschitz function. Let ϕ ∈ L+
1  be a continuous function such that 

ϕ(0) = F(ϕ). Then there exists a unique continuous function ℓ :ℝ+ L+
1  that is the solution 
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of the ADP problem for the functions F and G given in System (20) and the initial condition 
ϕ.

The proof can be found in Appendix B.4.

The results described in Proposition 5 can be translated back to our original problem to 

obtain the first theorem of existence (and regularity) of solutions:

Theorem 3. Let μ ≥ 0. Let T :ℝ+ ℝ+ be a function and k:ℝ+ ℝ+ a globally Lipschitz 

function satisfying Assumption 1. Let N0 > 0 and let i0:ℝ+ ℝ+ be a continuous function 

such that i0 ∈ L+
1  and

i0(0) = ∫
0

∞

T(v) i0(v)
N0 + ∫0

∞i0(τ)dτ
dv N0 + ∫

0

∞

k(τ)i0(τ)dτ . (21)

Then there exists a differentiable function N:ℝ+ ℝ+ and a continuous function 

i:ℝ+ L+
1 (ℝ) that solve System(15).

Proof. Let ϕn be any continuous function from ℝ+ to ℝ+ such that

ϕn(0) = μP,∫
0

∞
ϕn(τ)dτ = N0 .

Because we showed in Proposition 2 that F and G given in System (20) are Lipschitz on 

norm-balls of L1, we can use Theorem 1 to translate results of a solution of the ADP 

problem for the functions F and G and initial condition

ϕ = ϕn

i0

to results for solutions of the System (15), and by Proposition 1, of the general model 

(System (2)).

The first result is existence of a solution. We know that ϕ ∈ L+
1  is continuous, and by the 

definition of ϕ and Equation (21), we have

ϕ(0) = ϕn(0)
i0(0)

=
μP

ℱ(ϕ) N0 + ∫0
∞

k(τ)i0(τ)dτ = F(ϕ) .

So, given the hypothesis of Proposition 5, we can conclude that there is a solution for 

System (15). Moreover, this solution is defined for all t ∈ ℝ+, and satisfies
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N(t) = π1 ∫
0

∞
ℓ (τ, t)dτ ,

i(τ, t) = π2( ℓ (τ, t))

where ℓ is the solution of the ADP problem. □

By Part (c) of Proposition 2, ℓ ( ⋅ , t) ∈ L+
1  for all t ∈ ℝ+, so N(t) ≥ 0 and i( ⋅ , t) ∈ L+

1  as 

required. □

This result is not very restrictive in the conditions imposed on the initial distribution. 

We only require it to be continuous, L1 and to satisfy the non-local boundary condition. 

However, we are imposing an additional restriction on the susceptibility function, k, namely 

for it to be globally Lipschitz. We can dispense with this so long as we impose a stronger 

condition on the initial distribution. Our regularity results will then be stronger for the 

solution of the ADP problem. For this, we first need to show that our functions F and G are 

continuously F-differentiable.

Proposition 6. Let P > 0, μ ≥ 0. Let T, k:ℝ+ ℝ+ be bounded functions. Then

1. The function F :L1 ℝ2 defined by Equation (20a) is a continuously F-
differentiable function relative to L1. Its F-derivative is given by

F′ ϕ0 (ϕ) =
μW(ϕ)

ℱ ϕ0 W(ϕ) + ℱ(ϕ)W ϕ0
.

2. The function G : L1 → L 1defined by Equation (20b) is a continuously F-
differentiable function relative to L1 . Its F-derivative is given by

G′ ϕ0 (ϕ)(τ) = −
ℱ ϕ0 ϕn(τ) + ℱ(ϕ)ϕ0

n(τ) + μϕn(τ)

ℱ ϕ0 k(τ)ϕi(τ) + ℱ(ϕ)k(τ)ϕ0
i(τ) + μϕi(τ)

.

The proof can be found in Appendix B.5.

Proposition 7. Let P > 0, μ ≥ 0, and let T, k:ℝ+ ℝ+ be bounded. Let ϕ ∈ L+
1  be absolutely 

continuous such that ϕ′ ∈ L1 and ϕ(0) = F(ϕ) Then there exists a unique solution, ℓ, of the 
ADP problem for the F, G given in System (20) and the initial condition ϕ, such that

a. ℓ(·, t) is absolutely continuous for any t ∈ ℝ+

b. For every t ∈ ℝ+ the function τ ↦ ℓ(τ, t) is differentiable and its derivative is in 

∈ L1.

c. The function t ↦ ℓ(·, t) is continuously differentiable from ℝ+ to L1.
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d. ℓ also satisfies ∂
∂τ + ∂

∂t ℓ (τ, t) = G( ℓ ( ⋅ , t))(τ) for every t ∈ ℝ+ and a.e. for τ ∈ 

(0, ∞).

The proof can be found in Appendix B.6.

Finally, we can translate this into a result for the general model (System (2)), as stated 

below:

Theorem 4. Let μ ≥ 0. Let T, k:ℝ+ ℝ+ be functions that satisfy Assumption 1. Let N0 > 

0, and let i0:ℝ+ ℝ+ an absolutely continuous function such that i0 ∈ L+
1 , i0′ ∈ L1 and

i0(0) = ∫
0

∞
T(v)

i0(v)

N0 + ∫0
∞i0(τ)dτ

dv N0 + ∫
0

∞
k(τ)i0(τ)dτ .

Then there exist a continuously differentiable function N:ℝ+ ℝ+ and a continuous 

function i:ℝ+ L+
1 (ℝ) that solve System (2). Moreover,i(·, t) is absolutely continuous for 

any t ∈ ℝ+ and

D(i(τ, t)) = ∂
∂τ + ∂

∂t i(τ, t)

for every t ∈ ℝ+ and a.e. for τ ∈ (0, ∞)

Proof. Let ϕx ∈ L+
1  be any the absolutely continuous function such that ϕx′ ∈ L1, ϕx(0) = μ P 

and ∫0
∞ϕx(τ)dτ = N0. As in the proof of Theorem 3, the result follows by applying Theorem 

1 and Proposition 7. □

4. Discussion

We present a novel approach for epidemiological models by using two time variables, 

chronological time t and time-since-last infection (TSLI). One advantage of this approach 

is that fewer state variables are needed; in the general model (System (2)) considered, there 

are only two: N(t), the number of never infected people at time t, and i(τ, t), the density of 

people at time t who were infected at least once with their last infections occurring τ units of 

time ago.

In most models with age-of-infection τ, the infected state variable, such as i(τ, t), denotes 

the density of those who are either latently infected or infectious, and the equation is written 

using partial derivatives, ∂
∂τ + ∂

∂t i(τ, t). This requires stronger conditions on the model 

parameter functions (e.g., T(τ), k(τ) and i0(τ)) for the solution i(τ, t) to be in C1. In our 

model, individuals in the i(τ, t) class include not only latently infected and infectious, but 

also recovered, who may or may not have immunity; i.e., everyone except those who have 

never been infected. In addition, the equation for i(τ, t) is described using the differential 
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operator D, which allows weaker conditions on the parameter functions. We show that if i ∈ 

C1 then Di(τ, t) = ∂
∂τ + ∂

∂t i(τ, t).

To analyze the existence and regularity of solutions to the general model (System (2)), we 

apply published results for ADP problems, a term that refers to age-dependent populations 

as specified in Section 2.2 (see, e.g., [15,17]). For ease of framing the general model 

(System (2)) as an ADP problem, we first reformulate it as a coupled model as shown 

in Section 2.3. We also reformulate several published models to illustrate how readily age-

structured models can be formulated as coupled models (see Section 2.6). In turn, coupled 

models can be formulated as ADP problems (System (5)), in which case results for those 

problems can be applied.

The general model (System (2)) can be used to study the dynamics of transmission and 

control of many infectious diseases. The special feature of the class i(τ, t), together 

with the parameter functions T(τ) and k(τ) for infectivity and susceptibility based on 

TSLI, permits multiple scenarios, including: (i) complete immunity from natural infections 

(k(τ) = 0); (ii) partial or temporary immunity from infections (0 < k(τ) < 1); and (iii) 

enhanced susceptibility due to infections (sup k(τ) > 1). For example, one might make the 

following assumptions on T and k: (i) there exists a finite period during which individuals 

are infectious; (ii) immunity eventually wanes (i.e., k increases); and (iii) once-infected 

individuals become as susceptible as they ever would be. In other words, there exists τ0 and 

τ1 with 0 < τ0 < τ1 such that T(τ) = 0 for τ > τ0, k(τ) = 0 for τ < τ0, and k(τ) = sup k for τ > 

τ1. Applications of the general model (System (2)) under these conditions to study diseases 

such as tuberculosis and influenza will be presented elsewhere.
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Appendix A.: Definitions

This appendix includes definitions and terminology mentioned in the main text.

Definition 3. L+
1 = L+

1 ℝn = ϕ ∈ L1:ϕ(τ) ∈ ℝ+
n a . e . τ > 0 .

Definition 4. Let t > 0, ℓ ∈ Lt , F :L1 ℝn, G : L1 → L1, and ϕ ∈ L1 We say that ℓ is a mild 

solution of the ADP problem on [0, t] for the initial distribution ϕ provided that ℓ satisfies:

lim
ℎ 0+∫

0

∞

ℎ−1[ ℓ (τ + ℎ, t + ℎ) − ℓ (τ, t)] − G( ℓ ( ⋅ , t))(τ) dτ = 0, (A.1)

lim
ℎ 0+

ℎ−1∫
0

ℎ

ℓ (τ, t + ℎ) − F( ℓ ( ⋅ , t)) dτ = 0, (A.2)
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and

ℓ ⋅ , 0 = ϕ, 0 ≤ t ≤ t . (A.3)

Definition 5. For 0 < t ≤ ∞, we say that ℓ is the solution (respectively mild solution) of the 

ADP problem on [0, t ) for the initial distribution ϕ, provided that, for all t < t , ℓ restricted to 

[0, t ] is the solution (respectively mild solution) of the ADP problem on [0, t ] for the initial 

condition ϕ restricted to [0, t ].

Definition 6. If there exists a mild solution of the ADP problem on [0, t ] for some t > 0, we 

denote by tϕ, the maximal t > 0, such that there exists a mild solution of the ADP problem 

in [0, t ).

Definition 7. Given ϕ ∈ L1, F :L1 ℝn ℝn and G:L1 ℝn L1 ℝn , we define an 

equilibrium solution of the ADP problem for the functions F, G and initial condition ϕ 
as a solution of the ADP problem for the same functions on [0, ∞) such that ℓ(·, t) = ϕ for all 

t ≥ 0.

Definition 8. We define the projection function to the i-th entry πi:ℝn ℝ as

πi x1, …, xn = xi;

for m ∈ ℕ, 0 < m < n, the projection to the first m entries π(m):ℝn ℝm as

π(m) x1, …, xn = x1, …, xm ;

and, for k ∈ ℕ, 0 < k < n, the projection to the last k entries π( − k):ℝn ℝk as

π( − k) x1, …, xn = xn − k + 1, …, xn .

Definition 9. Let X and Y be normed spaces with norms ∥·∥X and ∥·∥Y, respectively, and let 

ℋ:X Y . We say that ℋ is Lipschitz on norm-balls of X if, for all r > 0, there exists c(r) > 

0 such that

ℋ x1 − ℋ x2 Y ≤ c(r) x1 − x2 X

for all x1, x2 ∈ X such that ∥x1∥X, ∥x2∥X ≤ r. If c(r) can be chosen to be the same constant for 

all r > 0, then ℋ is said to be globally Lipschitz.

Definition 10. Let X and Y be normed spaces with norms ∥·∥X and ∥·∥Y, respectively, and 

let D ⊂ X. We say that ℋ:D Y  is F-differentiable relative to D at x0 ∈ D if there exists 

ℋ′ x0 ∈ B(X, Y ), such that, given any ϵ > 0, there exists δ > 0 such that, if x ∈ D and ∥x – 

x0∥X < δ, then
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ℋ(x) − ℋ x0 − ℋ′ x0 x − x0 Y ≤ ϵ x − x0 X .

ℋ is said to be continuously F-differentiable relative to D on A ⊂ D if it is F-differentiable 

relative to D at each x ∈ A and if the map x ℋ′(x) is continuous from A to B(X, Y). ℋ′(x)
is called the F-derivative of ℋ at x.

Appendix B.: Proofs

B.1. Proof of Proposition 2

Proof. To simplify notation, let T = supτ T(τ)  and k = supτ k(τ)

Part (a). The linearity follows by the definition of the functions and fact that integration is a 

linear operator.

For ϕ ∈ L1, we have |ℱ(ϕ) | ≤ ∫0
∞T(τ) ϕo(τ) /P dτ ≤ T ∥ ϕ ∥ /P , 

|W(ϕ) | ≤ ∫0
∞ ϕn(τ) + k(τ) ϕi(τ) dτ ≤ k ∥ ϕ ∥, and |W(ϕ) | ≤ ∫0

∞ ϕn(τ) + ϕi(τ) τ = ∥ ϕ ∥. In 

addition, |W(ϕ) | = ∥ ϕ ∥ if ϕ ∈ L+
1 .

Part (b). Existence and uniqueness of the mild solution of the ADP problem is guaranteed 

if F and G are Lipschitz on norm-balls of L1 [15, Theorem 2.1]. In other words, we need to 

show that there exist functions c1, c2:ℝ+ ℝ+ such that |F(ϕ1) − F(ϕ2)| ≤ c1(r) ϕ1 – ϕ2∥ and 

∥G(ϕ1) − G(ϕ2)∥ ≤ c2(r)∥ ϕ1 − ϕ2∥ for all ϕ1, ϕ2 ∈ L1 with ∥ ϕ1∥, ∥ϕ2∥ ≤ r.

If ∥ ϕ1∥, ∥ϕ2∥ ≤ r., using Part (a), we have

F ϕ1 − F ϕ2 = μW ϕ1 − μW ϕ2 + ℱ ϕ1 W ϕ1 − ℱ ϕ2 W ϕ2
= μ W ϕ1 − ϕ2 + ℱ ϕ1 W ϕ1 − ℱ ϕ1 W ϕ2 + ℱ ϕ1 W ϕ2 − ℱ ϕ2 W ϕ2
≤ μ ϕ1 − ϕ2 + ℱ ϕ1 W ϕ1 − ϕ2 + W ϕ2 ℱ ϕ1 − ϕ2
≤ μ ϕ1 − ϕ2 + T

P ϕ1 W ϕ1 − ϕ2 + k ϕ2 ℱ ϕ1 − ϕ2

≤ μ ϕ1 − ϕ2 + T
P ϕ1 k ϕ1 − ϕ2 + k ϕ2

T
P ϕ1 − ϕ2

≤ μ ϕ1 − ϕ2 + 2rT
P k ϕ1 − ϕ2 .

Thus, we can choose

c1(r) = 2kTr
P + μ .

Similarly, if ∥ϕ1∥, ∥ϕ2∥ ≤ r, then
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∥ G ϕ1 − G ϕ2 ∥ = ∫
0

∞
−ℱ ϕ1 ϕ1

n(τ) + ℱ ϕ2 ϕn(τ) − μϕ1
n(τ) + μϕ2

n(τ) dτ

+ ∫
0

∞
−ℱ ϕ1 S(τ)ϕ1

i(τ) + ℱ ϕ2 k(τ)ϕi(τ) − μϕ1
i(τ) + μϕ2

i(τ) dτ

≤ ∫
0

∞
ℱ ϕ1 ϕ1

n(τ) − ℱ ϕ2 ϕ2
n(τ) dτ + μ∫

0

∞
ϕn(τ) − ϕn(τ) dτ

+ ∫
0

∞
ℱ ϕ1 k(τ)ϕ1

i(τ) − ℱ ϕ2 k(τ)ϕ2
i(τ) dτ + μ∫

0

∞
ϕi(τ) − ϕi(τ) dτ

≤ ∫
0

∞
ℱ ϕ1 ϕ1

n(τ) − ℱ ϕ1 ϕ2
n(τ) + ℱ ϕ1 ϕ2

n(τ) − ℱ ϕ2 ϕ2
n(τ) ∣ dτ

+ ∫
0

∞
ℱ ϕ1 k(τ)ϕ1

i(τ) − ℱ ϕ1 k(τ)ϕ2
i(τ) + ∣ ℱ ϕ1 k(τ)ϕ2

i(τ)

− ℱ ϕ2 k(τ)ϕ2
i(τ) ∣ dτ + μ ϕ1 − ϕ2

≤ ℱ ϕ1 k ϕ1 − ϕ2 + ℱ ϕ1 − ϕ2 k ϕ2 + μ ϕ1 − ϕ2
≤ 2 T

P kr ϕ1 − ϕ2 + μ ϕ1 − ϕ2 .

Thus, we can also take

c2(r) = 2kTr
P + μ .

Part (c). We can guarantee that ℓ ( ⋅ , t) ∈ L+
1  if we have the following two conditions [15, 

Theorem 2.4]:

i. F L+
1 ⊆ ℝ+

2 , and

ii. there exists an increasing function c3:ℝ+ ℝ+ such that

G(ϕ) + c3(r)ϕ ∈ L+1

whenever r > 0, ϕ ∈ L+
1 , and ∥ϕ∥ ≤ r.

Clearly F L+
1 ⊆ ℝ+

2 , so we only need to show that there exists a suitable function c3.

If ∥ϕ∥ ≤ r, using Part (a), we have

−G(ϕ)(τ) = ℱ(ϕ)ϕn(τ) + μϕn(τ)

ℱ(ϕ)k(τ)ϕi(τ) + μϕi(τ)
≤ (kℱ(ϕ) + μ)ϕ(τ)

≤ k T
P ∥ ϕ ∥ + μ ϕ(τ) ≤ k T

P r + μ ϕ(τ) .
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Therefore, we can take

c3(r) = kTr
P + μ .

□

B.2. Proof of Proposition 3

Proof. For 0 < t < tϕ and h > 0, we have

ℎ−1∫
0

∞
[ ℓ (τ, t + ℎ) − ℓ (τ, t)]dτ

= ℎ−1∫
0

ℎ
ℓ (τ, t + ℎ)dτ + ℎ−1∫

ℎ

∞
ℓ (τ, t + ℎ)dτ − ℎ−1∫

0

∞
ℓ (τ, t)dτ

= ℎ−1∫
0

ℎ
ℓ (τ, t + ℎ)dτ + ∫

0

∞
ℎ−1[ ℓ (τ + ℎ, t + ℎ) − ℓ (τ, t)]dτ,

which converges F( ℓ ( ⋅ , t)) + ∫0
∞G( ℓ ( ⋅ , t))(τ)dτ as h → 0+ because of Equations (A.1) and 

(A.2).

Adding the entries of vectors ℎ−1∫0
∞ ℓ (τ, t + ℎ) − ℓ (τ, t)dτ and 

F( ℓ ( ⋅ , t)) + ∫0
∞G( ℓ ( ⋅ , t))(τ)dτ, we obtain

W( ℓ ( ⋅ , t + ℎ)) − W( ℓ ( ⋅ , t))
ℎ 0

as h → 0+. In other words, t W( ℓ ( ⋅ , t)) is differentiable from the right in (0, tϕ), and its 

right derivative is 0.

Given 0 < t < tϕ, ℓ ∈ Lt  so the restriction of the solution is a continuous ℓ to [0, t] is a 

continuous function of t from [0, t] to L1; therefore, W( ℓ ( ⋅ , t)) is also continuous in [0, 

t]. Any continuous function in [0, t] that has non-negative right derivative everywhere in 

(0, t) is non-decreasing in [0, t] [16, Chapter 5, Proposition 2]. Because both W( ℓ ( ⋅ , t))
and −W( ℓ ( ⋅ , t)) have non-negative right derivatives, we can conclude that W( ℓ ( ⋅ , t)) is 

constant in [0, t] for any 0 < t < tϕ.

Finally, if ϕ ∈ L+
1 , because of Equation(A.3),

W( ℓ ( ⋅ , 0)) = W(ϕ) = ∫
0

∞
ϕn(τ) + ϕi(τ) dτ = ∥ ϕ ∥ ,
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so W( ℓ ( ⋅ , t)) = ∥ ϕ ∥ for all 0 ≤ t < tϕ. Additionally, from Part (c) of Proposition 2, we 

know that, if ϕ ∈ L+
1 , ℓ ( ⋅ , t) ∈ L+

1 , then W( ℓ ( ⋅ , t)) = ∥ ℓ ( ⋅ , t) ∥ for all 0 ≤ t < tϕ. □

B.3. Proof of Proposition 4

Proof. If tϕ < ∞, then lim supt>0∥ℓ(·, t)∥ = ∞ Theorem 2.3]. By Proposition 3, we know 

that ∥ℓ(·,t)∥ remains bounded (actually it is constant) for all t ∈ 0, tϕ  if ϕ ∈ L+
1 . So, we can 

conclude that tϕ = ∞. □

B.4. Proof of Proposition 5

Proof. The existence and uniqueness of a mild solution ℓ of the ADP problem is guaranteed 

by Part (b) of Proposition 2. Also tϕ = ∞ because of Proposition 4 and ℓ ( ⋅ , t) ∈ L+
1  for 

every t ∈ ℝ+ because of Part (c) of Proposition 2.

Note that

G(ϕ)(τ) = − M(τ, ϕ)ϕ

for all τ > 0, where M:ℝ+ × L1 B ℝ2, ℝ2  is defined as

M(τ, ϕ) = ℱ(ϕ) + μ 0
0 k(τ)ℱ(ϕ) + μ .

For G of this form, the mild solution of the ADP problem in [0, tϕ) is a continuous solution 

of the ADP problem in [0, tϕ) [15, Theorem 2.9] if

i. ϕ ∈ L1 is continuous and ϕ(0) = F(ϕ),

ii. F is Lipschitz on norm-balls of L1, and

iii. there exist increasing functions c4, c5, c6:ℝ+ ℝ+ such that, for all ϕ1, ϕ2 ∈ L1, 

τ1, τ2 ≥0:

a. ∥M(τ1, ϕ1) – M(τ2, ϕ1)∥op ≤ c4(∥ϕ1∥)|τ1 − τ2|

b. M(τ1, ϕ1)∥op ≤ c5(∥ϕ1∥)

c. ∥M(τ1, ϕ1) – M(τ1, ϕ2)∥op ≤ c6(r)∥ϕ1 – ϕ2∥ if ∥ϕ1∥, ∥ϕ2∥ ≤ r.

(i) is part of the hypothesis and we already showed (ii) in the proof of Proposition 2, so we 

proceed to prove (iii).

Define T = supτ T(τ)  and k = supτ k(τ) . Let ϕ1, ϕ2 ∈ L1, τ1, τ2 ≥ 0. Using the fact that k is 

globally Lipschitz, let K be a constant such that

k(τ) − k τ′ ≤ K τ − τ′
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for all τ, τ′ ≥ 0. We have

M τ1, ϕ1 − M τ2, ϕ1 op = k τ1 − k τ2 ℱ ϕ1
≤ KT

P ϕ1 τ1 − τ2 ,

and can take c4(r) = KT r
P

On the other hand,

M τ1, ϕ1 op = sup
x1 + x2 = 1

ℱ ϕ1 x1 + μx1 + k τ1 ℱ ϕ1 x2 + μx2

≤ sup
x1 + x2 = 1

ℱ ϕ1 x1 + μ x1 + k τ1 ℱ ϕ1 x2 + μ x2

≤ sup
x1 + x2 = 1

k ℱ ϕ1 + μ

≤ kT
P ϕ1 + μ,

and we can take c5(r) = kT r
P + μ.

Finally,

M τ1, ϕ1 − M τ1, ϕ2 op = sup
x1 + x2 = 1

ℱ ϕ1 − ϕ2 x1 + k τ1 ℱ ϕ1 − ϕ2 x2

≤ sup
x1 + x2 = 1

k ℱ ϕ1 − ϕ2 x1 + x2

≤ kT
P ϕ1 − ϕ2 ,

and we can take c6(r) = kT
P . □

B.5. Proof of Proposition 6

Proof. Let ϕ0 ∈ L1. Define T = supτ T(τ)  and k = supτ k(τ) . Note that both F′(ϕ0) and 

G′(ϕ0) defined above are linear operators from L1 to ℝ2 and from L1 to L1, respectively. 

They are bounded linear operators because

F′ ϕ0 (ϕ) = μW(ϕ) + ℱ ϕ0 W(ϕ) + ℱ(ϕ)W ϕ0

≤ μ + ℱ ϕ0 k + T
P W ϕ0 ∥ ϕ ∥ ,

and
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G′ ϕ0 (ϕ) = ∫
0

∞
ℱ ϕ0 ϕn(τ) + ℱ(ϕ)ϕ0

n(τ) + μϕn(τ) dτ

+ ∫
0

∞
ℱ ϕ0 k(τ)ϕi(τ) + ℱ(ϕ)k(τ)ϕ0

i(τ) + μϕi(τ) dτ

≤ ℱ ϕ0 k + T
P k ϕ0 + μ ∥ ϕ ∥ ,

for any ϕ ∈ L1.

Now, let ϵ > 0 and ϕ ∈ L1. We have

F(ϕ) − F ϕ0 − F′ ϕ0 ϕ − ϕ0
= ℱ(ϕ)W(ϕ) − ℱ ϕ0 W ϕ0 − ℱ ϕ0 W ϕ − ϕ0 − ℱ ϕ − ϕ0 W ϕ0
= ℱ(ϕ)W ϕ − ϕ0 − ℱ ϕ0 W ϕ − ϕ0
= ℱ ϕ − ϕ0 W ϕ − ϕ0
≤ T

P k ϕ − ϕ0 2

≤ ϵ ϕ − ϕ0 ,

if T = 0, k = 0, or if ‖ϕ − ϕ0‖ < δ = min 1, Pϵ
T k

 when T ≠ 0 and k ≠ 0.

Likewise, we have

G ϕ0 − G(ϕ) − G′ ϕ0 ϕ − ϕ0

= ∫
0

∞
ℱ ϕ − ϕ0 ϕn(τ) − ℱ ϕ − ϕ0 ϕ0

n(τ) dτ

+ ∫
0

∞
ℱ ϕ − ϕ0 k(τ)ϕi(τ) − ℱ ϕ − ϕ0 k(τ)ϕ0

i(τ) dτ

≤ k ℱ ϕ − ϕ0 ∫
0

∞
ϕn(τ) − ϕn(τ) + ϕo(τ) − ϕ0

i(τ) ∣ dτ

= k ℱ ϕ − ϕ0 ϕ − ϕ0
≤ k T

P ϕ − ϕ0 2,

which again is smaller than ϵ if T = 0, k = 0, or if ‖ϕ − ϕ0‖ < δ = min 1, Pϵ
T k

 when T ≠ 0 and 

k ≠ 0.

Now, let ϕ1, ϕ2 ∈ L1. We have
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F′ ϕ1 − F′ ϕ2 op = sup
∥ ϕ ∥ = 1

ℱ ϕ1 − ϕ2 W(ϕ) + ℱ(ϕ)W ϕ1 − ϕ2

≤ sup
∥ ϕ ∥ = 1

T
P ϕ1 − ϕ2 k ∥ ϕ ∥ + T

P ∥ ϕ ∥ k ϕ1 − ϕ2

= 2T
P k ϕ1 − ϕ2 .

Thus, ϕ ↦ F′(ϕ) is a continuous function from L1 to B(L1, ℝ2).

On the other hand,

G′ ϕ1 − G′ ϕ2 op = sup
∥ ϕ ∥ = 1 ∫

0

∞
ℱ ϕ1 − ϕ2 ϕn(τ) + ℱ(ϕ) ϕ1

n(τ) − ϕ2
n(τ) dτ

+ ∫
0

∞
∣ ℱ ϕ1 − ϕ2 k(τ)ϕi(τ) + ℱ(ϕ)k(τ ϕ1

i(τ) − ϕ2
i(τ) ∣ dτ

≤ sup
∥ ϕ ∥ = 1

ℱ ϕ1 − ϕ2 k ∥ ϕ ∥ + ℱ(ϕ)k ϕ1 − ϕ2

≤ 2T
P k ϕ1 − ϕ2 .

Thus, ϕ ↦ G′(ϕ) is also continuous as a function from L1 to B(L1, L1). □

B.6. Proof of Proposition 7

Proof. A mild solution of the ADP problem on [0, tϕ) is a solution of the ADP problem and 

satisfies conditions (a)–(d) for any t ∈ 0, tϕ  as long as the following conditions hold [17, 

Theorem 2.3]:

i. The functions F and G are Lipschitz on norm-balls of L+
1 ,

ii. There exists a function c3 that satisfies (ii) in the proof of Proposition 2, Part (c).

iii. The functions F and G are continuously F-differentiable relative to L+
1

iv. The initial condition ϕ has the properties: ϕ ∈ L+
1  and is absolutely continuous, 

ϕ′ ∈ L1, and ϕ(0) = F(ϕ).

The existence and uniqueness of the mild solution of the ADP problem can be guaranteed 

by Proposition 2. Conditions (i) and (ii) are shown in the proofs of Parts (b) and (c) of 

Proposition 2, respectively. Condition (iii) is Proposition 6, whereas (iv) is part of the 

hypothesis. Finally, the fact that tϕ = ∞ was the result of Proposition 4. □
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